

Sample Question Paper

Name of Programme : **B.A / B.Sc. Mathematics**
Semester : **II**
Paper Code : **CMA-106**
Paper Title : **Vector Analysis and Solid Geometry**
Full Marks : **80**
Pass Marks : **35** **Duration : 3 Hours**

The figures in the margin indicate full marks for the questions

Answer all the questions:

1. Choose and rewrite the correct answer for each of the following: 1×4=4

a) If \vec{a} , \vec{b} , \vec{c} and \vec{d} are non-zero vectors, then $(\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d})$ lies in the plane

- (i) \vec{a} and \vec{b}
- (ii) \vec{a} and \vec{d}
- (iii) \vec{a} and \vec{c}
- (iv) \vec{c} and \vec{d}

b) Given that $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and \vec{a} is any constant vector. Then $\text{curl}(\vec{r} \times \vec{a})$ is

- (i) \vec{a}
- (ii) $-\vec{a}$
- (iii) $2\vec{a}$
- (iv) $-2\vec{a}$

c) The equation $3x^2 - 4y^2 - 2z^2 = 7$ represents

- (i) an ellipsoid
- (ii) a hyperboloid of one sheet
- (iii) a hyperboloid of two sheet
- (iv) a hyperboloid paraboloid

d) The condition that the plane $lx + my + nz = p$ is a tangent plane to the sphere $x^2 + y^2 + z^2 = a^2$ is

- (i) $p^2(l^2 + m^2 + n^2) = a^2$
- (ii) $a^2(l^2 + m^2 + n^2) = p^2$
- (iii) $a(l^2 + m^2 + n^2) = p^2$
- (iv) $p(l^2 + m^2 + n^2) = a^2$

2. Write very short answer for each of the following questions: 1×5=5

- a) Define the gradient of a scalar point function.
- b) State Gauss divergence theorem.
- c) Write the equation of the sphere described on the joint of the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ as diameter.
- d) Define a right circular cylinder.
- e) Name the central conicoid represented by $ax^2 + by^2 = 2z$ when the constants a and b are of opposite signs.

3. Answer the following questions:**3×5=15**

- If $\phi = 2x^3y^2z^2$, then find the value of $\text{div.}(\text{grad } \phi)$ at the point $(1, -1, 1)$.
- Find the equation of the cone where vertex is (α, β, γ) and the guiding curve is $z = 0, ax^2 + by^2 = 1$.
- Find the equation of the sphere passing through the origin and the points $A(a, 0, 0), B(0, b, 0)$ and $C(0, 0, c)$.
- Find the generator of the paraboloid $4x^2 - y^2 = 8z$ which pass through the point $(3, -2, 4)$.
- Find the locus of the centres of sections of the conicoid $ax^2 + by^2 + cz^2 = 1$ which touch the conicoid $Ax^2 + By^2 + Cz^2 = 1$.

4. Answer the following questions:**4×5=20**

- Evaluate by Green's theorem

$$\oint_C \{(\cos x \sin y - xy)dx + \sin x \cos y dy\},$$

where C is the circle $x^2 + y^2 = 1$ in the xy -plane described in the positive sense.

- Prove that every section of a right circular cone by a plane perpendicular to its axis is a circle.
- Prove that the enveloping cylinder of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ whose generators are parallel to the line $\frac{x}{0} = \frac{y}{\sqrt{a^2 - b^2}} = \frac{z}{c}$ meet the plane $z = 0$ is a circle.
- Find the equation of the sphere which touches the sphere $x^2 + y^2 + z^2 = 21$ at the point $(1, -2, 4)$ and passes through the point $(3, 4, 0)$.
- Prove that the equation of the right circular cylinder whose axis is $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$ and radius r is $(l^2 + m^2 + n^2)(x^2 + y^2 + z^2 - r^2) = (lx + my + nz)^2$.

5. Answer any two of the following questions:**6×2=12**

- Show that the area bounded by a simple closed curve C is given by $\oint_C (xdy - ydx)$. Hence obtain the area of ellipse $x = a \cos t, y = b \sin t$.
- Verify the divergence theorem for the vector function $\vec{F} = (x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$

taken over the rectangular parallelepiped
 $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c.$

c) Verify Stoke's theorem for

$$\vec{F} = xy\hat{i} + xy^2\hat{j}$$

integrated around the square vertices $(1,0,0)$, $(1,1,0)$, $(0,1,0)$ and $(0,0,0)$
 where \hat{i} and \hat{j} are unit vectors along x -axis and y -axis respectively.

6. Answer any two of the following questions:

6×2=12

a) Prove that the plane $ax + by + cz = 0$ cuts the cone $yz + zx + xy = 0$ in two perpendicular lines if $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$.

b) Find the equation of the enveloping cylinder of the surface given by $ax^2 + by^2 + cz^2 = 1$, the generators being parallel to the line $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$.

c) Find the equation of the tangent plane to the paraboloid $ax^2 + by^2 = 2z$ parallel to $lx + my + nz = 0$.

7. Answer any two of the following questions:

6×2=12

a) Prove that through any point in space, in general, six normals can be drawn to any central conicoid.

b) The section of the enveloping cone of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ with P as vertex by the plane $z = 0$ is a circle. Find the locus of P .

c) Find the equations of the pair of tangent planes to the conicoid $ax^2 + by^2 + cz^2 = 1$ which passess through the line $u = lx + my + nz - p = 0$ and $u' = l'x + m'y + n'z - p' = 0$.
